BIOSTATS 640 – Introduction to R Spring 2023

https://people.umass.edu/biep640w/webpages/demonstrations.html

https://www.simplilearn.com/what-is-descriptive-statisticsarticle

Numerical Summarization & One and Two Sample Inference *February 17, 2023*

Right click to download R dataset sepsis.Rdata

Welcome to Lesson 02!

In this lesson, we begin with some nuts and bolts tools of R that ... well ... you just need to know! Next, you'll learn how to create a categorical variable in R (R calls this a factor and it is not the same thing as a character/string variable). The remainder of this lesson will be an introduction to using R Studio for one and two sample inference. Enjoy!

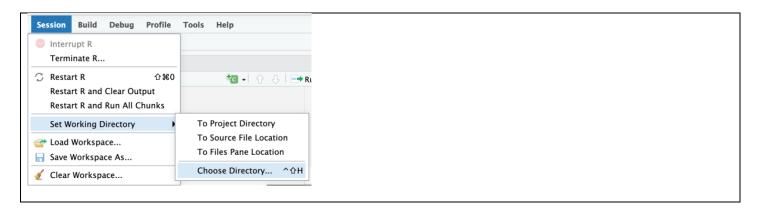
	, , , , , , , , , , , , , , , , , , ,	Page
1	Highlight of Lesson 01 – Up and Running with R Studio	2
2	Set Your Working Directory	3
3	Good to Know: Introduction to Packages	4
4	How to Import an Excel Dataset into R Studio	6
5	How to Create a Categorical Variable: Introduction to Factors in R.	9
6	One Sample Inference	11
7	Two Sample Inference	18
8	Some Good Videos	22

1. Highlights of Lesson 01 - Up and Running with R Studio

We will be doing all our work in R Studio	R Studio is an application that sits "on top" of R. R is then "under the hood". R Studio provides a very friendly environment for doing lots of things: writing and executing code, managing files and directories, and working with packages.
 is the command prompt, located in the console pane denotes a comment; R ignores the rest of the line 	
R is case sensitive	And is unforgiving!
Use the function c() to create vectors of data and separate arguments by commas	For example: v1 <- c(14,35,81,99)
dataframe A "dataset" (analogous to excel spreadsheet or SAS dataset or Stata dataset) is called a dataframe in R	
R can work with more than one dataset at a time.	
To identify a variable in a dataframe, R utilizes a two- part naming convention: dataframename\$variablename	For example: arthritis\$Age
Statistical functions run on COMPLETE data only. Tip: use option na.rm=T to remove missings (NA)	For example: mean(v1, na.rm=T) mean(v1, na.rm=TRUE) # This also works.

2. Set Your Working Directory

What is the working directory and why do I need to set it?


R needs to know where to find the files to **read from** and where to **write to**. This location is a directory with an associated path and is known as your **working directory**.

setwd() - Set your working directory

getwd() - Show current working directory

How to Set Your Working Directory Method I - Using the R Studio/Posit Menus

From the top menu bar, click Session > Set Working Directory > Choose Directory Browse to navigate to your desired folder. Click **CHOOSE**.

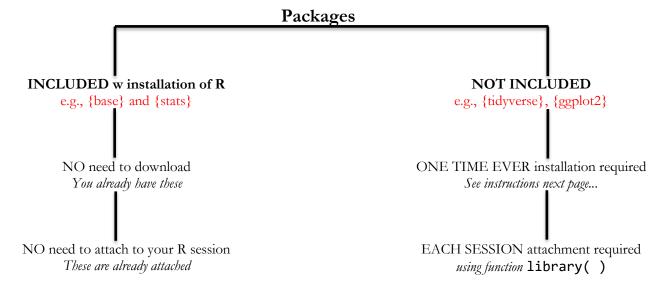
How to Set Your Working Directory Method II - Using the setwd() function in the console

IMPORTANT. The path name must be enclosed in quotes.

Example (Windows): setwd("My Documents/BIOSTATS 640/homeworks")

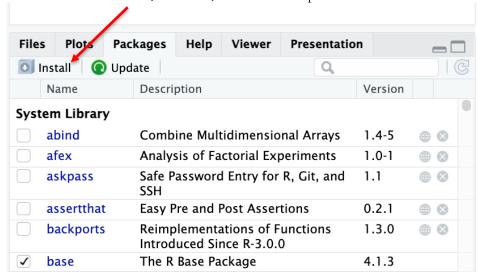
Example (Mac): setwd("~Desktop/BIOSTATS 640/homeworks")

How to Show Your Current Working Directory – Use the command getwd() getwd() # Yes. The parentheses are left empty

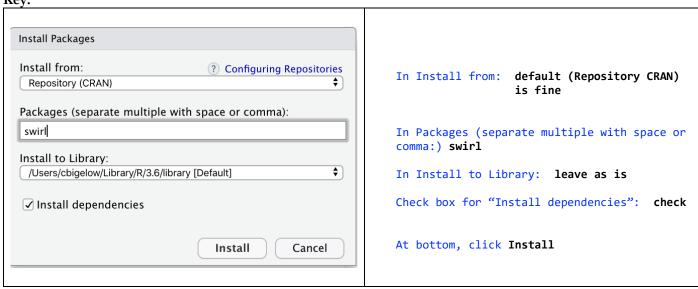

#3. Good to Know! Introduction to Packages

Why do I need to know about packages?

Your installation of R came with some pre-installed commands that are contained within pre-installed packages. Lots of them. However, very often (and I mean VERY OFTEN), you will want to make use of commands and features of packages that are not pre-installed. To do so, you need to: 1) download and install the package (one time); and 2) attach the package to your R Studio session (one time/session).


A package is a collection of functions and datasets

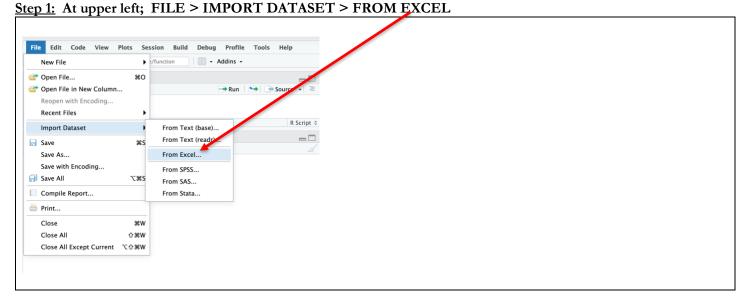
There are two types of packages, included with installation and not included with installation.



How to Install a Package Using R Studio Menus (recommended) Example: { swir1 }

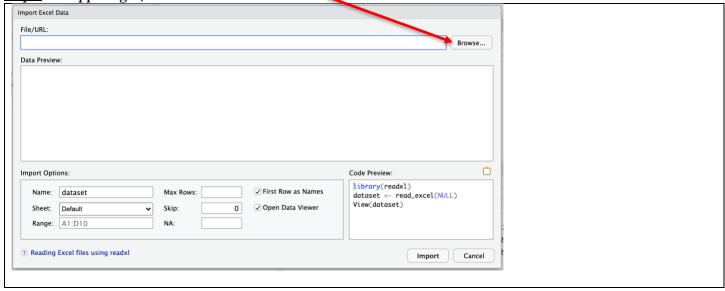
From the FILES/PLOTS/PACKAGES pane choose PACKAGES and click Install

Key:

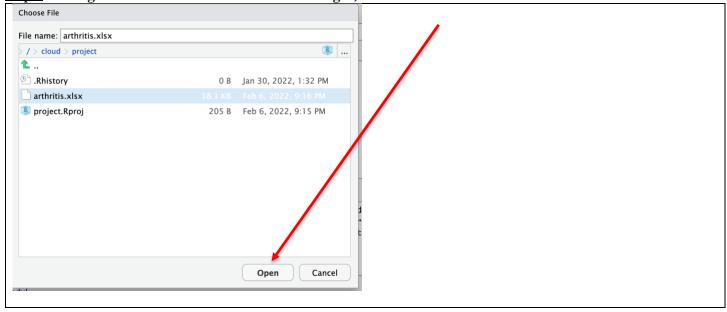


#4. How to Import an Excel Dataset into R

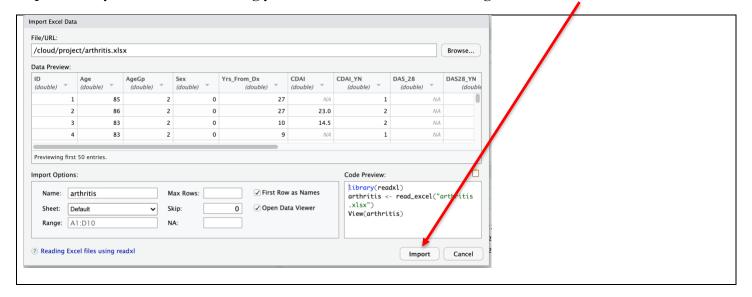
Preliminaries (Important):

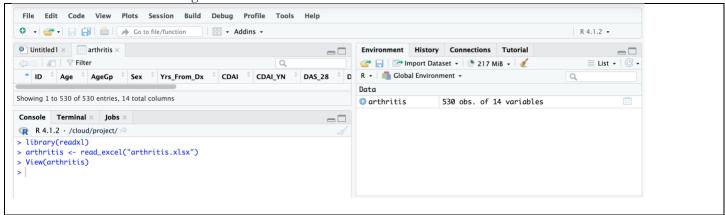

- (1) Make sure that you have downloaded from the course website the dataset arthritis.xlsx.
- (2) Strongly encouraged: (Source: marinstats lectures) Importing Excel Data into R (video, 8:12)

How to Import Excel Data Using R Studio Menus

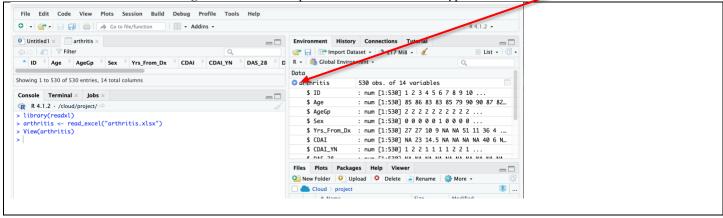


Note: R may return a message saying that you need to install readxl. Click YES. Then wait until you get a prompt.


Step 2: At upper right, click on the icon BROWSE.


Step 3: Navigate to choose arthritis.xlsx. At lower right, click OPEN

Step 4: Take your time here in making your selections. All set? At lower right, click IMPORT



You should now see the following

Step 5: At right, in the Environment tab, click on the down arrow next to the dataset name arthritis.

You should then see the following information: sample size, # variables, data types, etc.

#5. How to Create a Categorical Variable: Introduction to Factors in R

Exploration and analysis of categorical data in R involves working with R factor objects.

In statistical/biostatistical parlance, we talk about categorical variables. A categorical variable might be:

- Qualitative/nominal: e.g., state of residence (MA, NY, CT, etc)
- Qualitative/ordinal: e.g., level of pain ("low", "medium", "high")
- Quantitative discrete count: e.g., number of visits to the dentist (0, 1, 2, etc.)

R calls these factors. Factors are NOT THE SAME THING as R objects that are character objects. Typically (there might be exceptions), we want to use factors.

How to create a factor object (categorical variable) from a character object

```
# ---- Create a character object to play with -----#
> character_v1 <- c("winter", "winter", "fall", "spring", "spring", "summer", "fall")</pre>
> character_v1
[1] "winter" "winter" "fall" "spring" "spring" "summer" "fall"
> # ---- default ordering is ALPHABETICAL -----#
                                                                                   # Default arrangement is ALPHABETICAL
> factor_v1 <- factor(character_v1)</pre>
> factor v1
[1] winter winter fall spring spring summer fall
Levels: fall spring summer winter
> factor_v2 <-factor(character_v1,</pre>
                      levels=c("winter", "spring", "summer", "fall"))
                                                                                 # You can choose arrangement as you like
> factor v2
[1] winter winter fall spring spring summer fall
Levels: winter spring summer fall
> factor_v3 <-factor(character_v1,</pre>
                      levels=c("winter", "spring", "summer", "fall"),
                       ordered=TRUE)
                                                                                    # And you can declare as ORDINAL
> factor_v3
[1] winter winter fall spring spring summer fall
 Levels: winter < spring < summer < fall
```

How to create a factor object (categorical variable) from a numeric object

```
> # ---- Create a numeric object to play with -----#
> numeric_v1 <- c(1,1,2,1,1,2,2,1,1)
> numeric_v1
[1] 1 1 2 1 1 2 2 1 1
> factor_v4 <- factor(numeric_v1,
+ levels = c(1,2),
+ labels= c("Male", "Female"))
> factor_v4
[1] Male Male Female Male Male Female Male Male
Levels: Male Female
> class(numeric_v1)
[1] "numeric"
> class(factor_v4)
[1] "factor"
```

6. One Sample Inference

Dataset (right click to download):

sepsis.Rdata

Packages used:

{DescTools}, {stargazer}, {summarytools} {tidyverse}

Tip for Hypothesis Testing

Alternative Hypothesis	R Code	
Two sided	, alternative="two.sided"	
Right tail	, alternative="greater"	
Left tail	, alternative="less"	

Tip for Confidence Intervals

If you want	R Code	
95% CI	Nothing you need to do this is default	
90% CI	, conf.level = .90	
and so on	, conf.level = . <mark>FILLIN</mark>	

Load R dataset to session

Step 1: If you have not already done so, right click to download sepsis.Rdata from course website.

Step 2: R Studio/Posit in the Cloud Users Only) Upload sepsis.Rdata

Step 3: Put sepsis.Rdata into your working directory

Step 4: load(file="sepsis.Rdata")

6.1. One Sample – Continuous Outcome Normal Distribution Model

At a Glance

At a Glarice		
Numerical Summarization	<pre>summary(outcome) library(summarytools) descr(df\$outcome, stats=c("n.valid", "mean", "sd", "med", "min", "max"), transpose=TRUE)</pre>	<pre># Method 1 # Method 2 # User chooses</pre>
Confidence Interval Estimation	<pre># Confidence Interval for mean t.test(outcome ~ 1, data=df, conf.level=.90)\$conf.int # Confidence Interval for variance library(DescTools) VarTest(df\$outcome, conf.level=.90)\$conf.int</pre>	<pre># Default is conf.level=.95 # Default is conf.level=.95</pre>
Hypothesis Testing	<pre># One Sample t-test of mean t.test(outcome ~ 1, data=df, mu=nullmean) # One Sample t-test of variance library(DescTools) VarTest(df\$outcome, sigma.squared=nullvariance)</pre>	

```
____
```

```
Examples.
# Z Test of mean: Population variance/standard deviation are KNOWN
library(DescTools)
ZTest(sepsis$o2del,
         mu = 1000,
                                                             # null hypothesis mean
         sd pop=409,
                                                             # known population standard deviation sigma
         alternative="greater")
                                                             # alternative: true mean > null mean
          One Sample z-test
data: sepsis$o2del
z = 0.75478, Std. Dev. Population = 409, p-value = 0.2252
                                                               # Null mu=1000 v mu > 1000 is NOT rejected
alternative hypothesis: true mean is greater than 1000
95 percent confidence interval:
 971.9137
              Inf
sample estimates:
mean of x
 1023.817
# T-test of mean: Population variance/standard deviation NOT known
t.test(o2del~1,
                                                              # model formulation
        data=sepsis,
                                                              # data to use
        mu = 1200,
                                                              # null hypothesis mean
        alternative="two.sided",
                                                              # alternative: true mean ≠ null mean
                                                              # show 90% CI
        conf.level=.90,
                                                              # omit NA's (missing values)
        na.rm=TRUE)
          One Sample t-test
data: o2del
 t = -5.5773, df = 167, p-value = <mark>0.00000009658</mark>
                                                              # 2 sided p << .0001. Reject null (mu=1200)
alternative hypothesis: true mean is not equal to 1200
90 percent confidence interval:
                                                              # 90% CI does NOT contain null mu=1200
  971.5676 1076.0665
 sample estimates:
mean of \boldsymbol{x}
 1023.817
```

```
# Test of Variance
library(DescTools)
                                                           # You could use var.test( ) in {base}. I like this
VarTest(sepsis$o2del,
      sigma.squared=1600)
                                                           # Null hypothesis variance (not SD!)
          One Sample Chi-Square test on variance
data: sepsis$o2del
X-squared = 17498, df = 167, p-value < 0.000000000000000022
                                                               # 2 sided p << .0001 Reject null (sigma2 = 1600)
alternative hypothesis: true variance is not equal to 1600
95 percent confidence interval:
136784.9 210324.6
                                                               # 95% CI does NOT contain null sigma2 = 1600
sample estimates:
variance of x
    167643.2
```

6.2. One Sample – Discrete Outcome Binomial Distribution Model

At a Glance

Numerical Summarization	summary(outcome) # Method 1 library(summarytools) # Method 2 freq(df\$outcome) # Outcome must be factor
Confidence Interval Estimation	<pre># Confidence Interval for proportion - EXACT binom.test(x=#events,n=ntrials,conf.level=.90)\$conf.int # Default is conf.level=.95 # Confidence Interval for proportion - NORMAL APPROXIMATION prop.test(x=#events,n=ntrials,conf.level=.99)\$conf.int # Default is conf.level=.95</pre>
Hypothesis Testing	<pre># Hypothesis Test for Binomial Proportion - EXACT binom.test(x=#events,n=ntrials,p=nullp,</pre>

Examples.

```
# Binomial Proportion: Exact Inference
library(tidyverse)
# For small to moderate sample size - For illustration I will obtain a small sample size = 25
temp <- sepsis %>%
       sample_n(25, na.rm=TRUE)
xevents <- sum(temp$treat, na.rm=TRUE)</pre>
                                                     \# sum of 0/1 events gives x = xevents = \# successes
ntrials <- sum(!is.na(temp$treat))</pre>
                                                      # sum of !is.na gives n = ntrials = # trials
binom.test(x=xevents,n=ntrials,p=.5)
                                                                   # Hypothesis Test (Null: p = .50)
         Exact binomial test
data: xevents and ntrials
number of successes = 14, number of trials = 25, p-value = 0.69
alternative hypothesis: true probability of success is not equal to 0.5 # p=.69 do NOT reject null proportion =.50
95 percent confidence interval:
0.3492816 0.7559763
sample estimates:
probability of success
                 0.56
```

```
# Binomial Proportion: Normal Approximation
library(tidyverse)
xevents <- sum(sepsis$treat, na.rm=TRUE)</pre>
                                                   # sum of 0/1 events gives x = xevents = # successes
ntrials <- sum(!is.na(sepsis$treat))</pre>
                                                      # sum of !is.na gives n = ntrials = # trials
prop.test(x=xevents,n=ntrials,p=.5, correct=FALSE)
                                                         # Hypothesis Test (Null: p = .50)
         1-sample proportions test without continuity correction
data: xevents out of ntrials, null probability 0.5
X-squared = 0.10769, df = 1, p-value = 0.7428
                                                           # pvalue = .74 do NOT reject null proportion =.50
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4466279 0.5381163
                                                          # 95% CI contains the null proportion = .50
sample estimates:
0.4923077
```

6.3. One Sample PAIRED – Continuous Outcome Normal Distribution Model

Preliminary – Is your paired data wide or long? Wide Data

Long Data

At a Glance

Numerical Summarization	<pre>* WIDE: Paired variables (e.g., pre and post) in WIDE format myvars <- c("prevar", "postvar") descr(df[myvars],</pre>
	* LONG: Paired variables (e.g., pre and post) are in LONG FORMAT library(summarytools) with(df,
	stby(data = outcomevar, INDICES = timevar, FUN = descr, stats = c("mean", "sd", "min", "med","max"), # User chooses transpose=TRUE))
Confidence Interval Estimation	<pre># Confidence Interval for mean t.test(outcome ~ 1, data=df, conf.level=.90)\$conf.int # Tip. Outcome = post - pre</pre>
	# Confidence Interval for variance
	library(DescTools) VarTest(<mark>df</mark> \$ <mark>outcome</mark> , conf.level= <mark>.90</mark>)\$conf.int # Default is conf.level=.95
Hypothesis Testing	<pre># One Sample t-test of mean t.test(outcome ~ 1, data=df, mu=nullmean)</pre>
	# One Sample t-test of variance library(DescTools)
	VarTest(<mark>df</mark> \$ <mark>outcome</mark> , sigma.squared= <mark>nullvariance</mark>)

Examples.

```
# Paired Data Student t-Test: WIDE
t.test(sepsis$temp0,sepsis$temp7, paired=TRUE,
                                                            # data in WIDE
     var.equal=FALSE,
     na.rm=TRUE)
        Paired t-test
data: sepsis$temp0 and sepsis$temp7
# p << .0001. Null of equality pre/post is rejected</pre>
95 percent confidence interval:
                                                  # 95% CI does NOT contain Null difference of 0
1.093632 1.478282
sample estimates:
mean of the differences
            1.285957
# Paired Data Student t-Test: LONG
library(tidyverse)
# paired t LONG requires sorted by id then by occasion nested in id
longdf <- longdf %>%
        arrange(id, hour)
# Now do paired t - LONG
t.test(temp ~ hour, data=longdf, paired=TRUE)
        Paired t-test
data: temp by hour
# p << .0001. Null of equality pre/post is rejected</pre>
95 percent confidence interval:
1.093632 1.478282
                                                 # 95% CI does NOT contain Null difference of 0
sample estimates:
mean of the differences
            1.285957
```

7. Two Sample Inference

Dataset (right click to download):

sepsis.Rdata

Packages used:

{DescTools}, {stargazer}, {summarytools} {tidyverse}

Tip for Hypothesis Testing

The for try poeticolo recting		
Alternative Hypothesis	R Code	
Two sided	, alternative="two.sided"	
Right tail	, alternative="greater"	
Left tail	, alternative="less"	

Tip for Confidence Intervals

If you want	R Code	
95% CI	Nothing you need to do this is default	
90% CI	, conf.level = .90	
and so on	, conf.level = . <mark>FILLIN</mark>	

Load R dataset to session

Step 1: If you have not already done so, right click to download sepsis.Rdata from course website.

Step 2: R Studio/Posit in the Cloud Users Only) Upload sepsis.Rdata

Step 3: Put sepsis.Rdata into your working directory

Step 4: load(file="sepsis.Rdata")

7.1. Two Independent Samples – Continuous Outcome Normal Distribution Model

At a Glance

```
* LONG: data are in LONG format
                       by(df[ , c("outcomevar")],
                                                                               # summarize only outcomevar
    Numerical
                         df$groupvar,
                                                                               # grouping variable
                                                                               # use function summary in {base}
  Summarization
                         summary)
                       library(summarytools)
                       with(df,
                          stby(data = outcomevar,
                                                                                        # groupvar must be factor
                              INDICES = groupvar,
                              FUN = descr, stats = c("mean", "sd", "min", "med", "max"),
                                                                                        # User chooses
                              transpose=TRUE))
                       * LONG: data are in LONG format
    Confidence
                       # Confidence Interval for mean difference (group1 - group2)
Interval Estimation
                       t.test(outcome ~ groupvar, data=df, conf.level=.90)$conf.int
                       # Two Sample Test of Equality of Variances
Hypothesis Testing
                       # "two.sided", "greater", "less"
                       # Two Sample Test of Equality of Means - UNEQUAL variances
                       t.test(outcome ~ groupvar, data=df,
                          alternative="two.sided")
                                                                              # "two.sided", "greater", "less"
                       # Two Sample Test of Equality of Means - EQUAL variances
                       t.test(outcome ~ groupvar, data=df, var.equal=TRUE,
                          alternative="two.sided")
                                                                              # "two.sided", "greater", "less"
```

Examples.

```
# Test of Equality of Variances
# REQUIRED: group variable must be factor
sepsis$fatef <- factor(sepsis$fate,</pre>
                    levels=c(0,1),
                    labels=c("Alive", "Dead"))
var.test(o2del ~ fatef, data=sepsis)
                                                          # Preliminary: test of vars
# Test of Equality of Means
t.test(o2del ~ fatef, data=sepsis,
                                                          # t-test assuming equal var (provides CI, too)
        var.equal=TRUE)
         F test to compare two variances
data: o2del by fatef
F = 0.91965, num df = 100, denom df = 66, p-value = 0.6975
                                                                    # okay to assume equal variances
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.5846373 1.4175632
sample estimates:
ratio of variances
         0.9196542
         Two Sample t-test
data: o2del by fatef
t = 2.5796, df = 166, p-value = 0.01076
                                                                        # reject Null of equal means
alternative hypothesis: true difference in means between group Alive and group Dead is not equal to 0
95 percent confidence interval:
 38.40254 288.94124
sample estimates:
mean in group Alive mean in group Dead
          1089.0910
                               925.4191
```

7.2. Two Independent Samples – Discrete Outcome Binomial Distribution Model

At a Glance

Numerical	table(df\$discrete1,df\$discrete2, useNA="always")	# Method 1
Summarization	library(summarytools)	# Method 2
	<pre>with(df, ctable(rowvar, colvar, prop="n"), totals=TRUE)</pre>	<pre># vars must be factor # User chooses "n", "r", "c" # use this if you want totals</pre>
Hypothesis Testing	<pre># Fisher Exact Test of Equality of Proportions (NULL: Odds Ratio = 1) fisher.test(df\$rowvar,df\$colvar)</pre>	
	# Chi Square Test of Equality of Proportions - WITH continuity correction (default) chisq.test(df\$rowvar,df\$colvar)	
	# Chi Square Test of Equality of Proportions - WITHOUT continuity correction chisq.test(df\$rowvar,df\$colvar, correct=FALSE)	

Example.

```
mytable <- table(sepsis$treat,sepsis$fate)  # Use table() to create table
dimnames(mytable) <- list(
    Treatment=c("Untreated","Treated"),
    Fate=c("Alive","Dead"))

mytable
chisq.test(mytable,correct=FALSE)  # large n, no correction needed</pre>
```

```
Fate
Treatment Alive Dead
Untreated 139 92
Treated 140 84

Pearson's Chi-squared test

data: mytable
X-squared = 0.25959, df = 1, p-value = 0.6104  # p-value = .61 Do NOT reject null of independence
```

8. Some Good Videos

- __1. (Source: MarinStats Lectures R Tutorials)
 One Sample T-Test and Constructing One Sample Confidence Interval (video, 4:39)
- __2. (Source: MarinStats Lectures R Tutorials)
 Wilcoxon Signed Rank Test (video, 3:38)
- __3. (Source: MarinStats Lectures R Tutorials)
 Paired T Test in R (video, 4:19)
- __4. (Source: MarinStats Lectures R Tutorials)
 Two Sample T-Test and Confidence Interval in R (video, 5:21)